Novel Algorithms for Sensitivity Analysis

نویسنده

  • MAHA M. EL CHOUBASSI
چکیده

Sensitivity analysis attacks constitute a known family of watermark “removal” attacks exploiting a vulnerability in some watermarking protocols: the attacker’s unlimited access to the watermark detector. In this work, novel attacks on additive spread spectrum schemes are designed. We first examine a well-known algorithm by Kalker et al., and prove its convergence using the law of large numbers; this analysis provides more insight into the problem. Next, two new algorithms are presented and compared to existing ones. The new algorithms successfully “remove” the watermark for a wide range of detection methods. These include the simple correlation detectors and normalized correlation detectors, as well as other, more complicated detectors like the maximum likelihood detector corresponding to generalized Gaussian hosts. Moreover, the suggested algorithms are noniterative and require at most 2n + 1 detection operations in order to estimate the watermark, where n is the dimension of the signal. Briefly, the new approach is to directly estimate the watermark by exploiting the geometry of the detection boundary and the information leaked by the detector. These facts illustrate the high susceptibility of one of the most used embedding schemes (additive spread spectrum) and emphasize the vital need for more secure watermarking systems.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Comparison the Sensitivity Analysis and Conjugate Gradient algorithms for Optimization of Opening and Closing Angles of Valves to Reduce Fuel Consumption in XU7/L3 Engine

In this study it has been tried, to compare results and convergence rate of sensitivity analysis and conjugate gradient algorithms to reduce fuel consumption and increasing engine performance by optimizing the timing of opening and closing valves in XU7/L3 engine. In this study, considering the strength and accuracy of simulation GT-POWER software in researches on the internal combustion engine...

متن کامل

Novel Hybrid Fuzzy-Evolutionary Algorithms for Optimization of a Fuzzy Expert System Applied to Dust Phenomenon Forecasting Problem

Nowadays, dust phenomenon is one of the important challenges in warm and dry areas. Forecasting the phenomenon before its occurrence helps to take precautionary steps to prevent its consequences. Fuzzy expert systems capabilities have been taken into account to assist and cope with the uncertainty associated to complex environments such as dust forecasting problem. This paper presents novel hyb...

متن کامل

Novel Hybrid Fuzzy-Evolutionary Algorithms for Optimization of a Fuzzy Expert System Applied to Dust Phenomenon Forecasting Problem

Nowadays, dust phenomenon is one of the important challenges in warm and dry areas. Forecasting the phenomenon before its occurrence helps to take precautionary steps to prevent its consequences. Fuzzy expert systems capabilities have been taken into account to assist and cope with the uncertainty associated to complex environments such as dust forecasting problem. This paper presents novel hyb...

متن کامل

Techno-economic operation optimization of a HRSG in combined cycle power plants based on evolutionary algorithms: A case study of Yazd, Iran

In this research study, energy, exergy and economic analyses is performed for a combined cycle power plant (CCPP) with a supplementary firing system. The purpose of this analyses is to evaluate the economic feasibility of a CCPP by applying an optimization techniques based on Evolutionary algorithms. Actually, the evolutionary algorithms of Firefly, PSO and NSGA-II are applied to minimize the c...

متن کامل

Improving the Performance of ICA Algorithm for fMRI Simulated Data Analysis Using Temporal and Spatial Filters in the Preprocessing Phase

Introduction: The accuracy of analyzing Functional MRI (fMRI) data is usually decreases in the presence of noise and artifact sources. A common solution in for analyzing fMRI data having high noise is to use suitable preprocessing methods with the aim of data denoising. Some effects of preprocessing methods on the parametric methods such as general linear model (GLM) have previously been evalua...

متن کامل

Novel Automated Method for Minirhizotron Image Analysis: Root Detection using Curvelet Transform

In this article a new method is introduced for distinguishing roots and background based on their digital curvelet transform in minirhizotron images. In the proposed method, the nonlinear mapping is applied on sub-band curvelet components followed by boundary detection using energy optimization concept. The curvelet transform has the excellent capability in detecting roots with different orient...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2005